Spo13 protects meiotic cohesin at centromeres in meiosis I.
نویسندگان
چکیده
In the absence of Spo13, budding yeast cells complete a single meiotic division during which sister chromatids often separate. We investigated the function of Spo13 by following chromosomes tagged with green fluorescent protein. The occurrence of a single division in spo13Delta homozygous diploids depends on the spindle checkpoint. Eliminating the checkpoint accelerates meiosis I in spo13Delta cells and allows them to undergo two divisions in which sister chromatids often separate in meiosis I and segregate randomly in meiosis II. Overexpression of Spo13 and the meiosis-specific cohesin Rec8 in mitotic cells prevents separation of sister chromatids despite destruction of Pds1 and activation of Esp1. This phenotype depends on the combined overexpression of both proteins and mimics one aspect of meiosis I chromosome behavior. Overexpressing the mitotic cohesin, Scc1/Mcd1, does not substitute for Rec8, suggesting that the combined actions of Spo13 and Rec8 are important for preventing sister centromere separation in meiosis I.
منابع مشابه
Spo13 Facilitates Monopolin Recruitment to Kinetochores and Regulates Maintenance of Centromeric Cohesion during Yeast Meiosis
BACKGROUND Cells undergoing meiosis perform two consecutive divisions after a single round of DNA replication. During the first meiotic division, homologous chromosomes segregate to opposite poles. This is achieved by (1) the pairing of maternal and paternal chromosomes via recombination producing chiasmata, (2) coorientation of homologous chromosomes such that sister chromatids attach to the s...
متن کاملSpo13 regulates cohesin cleavage.
A key aspect of meiotic chromosome segregation is that cohesin, the protein complex that holds sister chromatids together, dissociates from chromosome arms during meiosis I and from centromeric regions during meiosis II. The budding yeast protein Spo13 plays a key role in preventing centromeric cohesin from being lost during meiosis I. We have determined the molecular basis for the metaphase ar...
متن کاملPolo kinase Cdc5 is a central regulator of meiosis I.
During meiosis, two consecutive rounds of chromosome segregation yield four haploid gametes from one diploid cell. The Polo kinase Cdc5 is required for meiotic progression, but how Cdc5 coordinates multiple cell-cycle events during meiosis I is not understood. Here we show that CDC5-dependent phosphorylation of Rec8, a subunit of the cohesin complex that links sister chromatids, is required for...
متن کاملThe core centromere and Sgo1 establish a 50-kb cohesin-protected domain around centromeres during meiosis I.
The stepwise loss of cohesins, the complexes that hold sister chromatids together, is required for faithful meiotic chromosome segregation. Cohesins are removed from chromosome arms during meiosis I but are maintained around centromeres until meiosis II. Here we show that Sgo1, a protein required for protecting centromeric cohesins from removal during meiosis I, localizes to cohesin-associated ...
متن کاملSpo13 Maintains Centromeric Cohesion and Kinetochore Coorientation during Meiosis I
BACKGROUND The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 16 13 شماره
صفحات -
تاریخ انتشار 2002